电阻焊培训基础教程
文/凤巢
一、焊接的定义与分类
1、焊接的定义:
通过加热、加压或二者并用,加或不加填充材料,消除金属材料表面不平和氧化膜,使两金属原子间达到晶格距离,形成的永久性连接的加工方法就是焊接。
2、焊接的分类:熔化焊、压力焊、钎焊
常见的熔化焊有气焊、手工电弧焊、埋弧焊、二氧化碳气体保护焊、氩弧焊。
常见的压力焊有电阴焊、摩擦焊。
电阻焊属于电子热的焊接。它是利用电流通过工件及焊接接触面间所产生的电阻热,将焊件加热至塑性或局部融化状态,再施加压力形成焊接接头的焊接方法。
二、电阻焊分为点焊、缝焊和对焊3种形式。
(1)点焊:将焊件压紧在两个柱状电极之间,通电加热,使焊件在接触处熔化形成熔核,然后断电,并在压力下凝固结晶,形成组织致密的焊点。
点焊适用于焊接4mm一下的薄板(搭接)和钢筋,广泛用于汽车、飞机、电子、仪表和日常生活用品的生产。
(2)缝焊:缝焊与点焊相似,所不同的是用旋转的盘状电极代替柱状电极。叠合的工件在圆盘间受压通电,并随圆盘的转动而送进,形成连续焊缝。缝焊适宜于焊接厚度在3mm以下的薄板搭接,主要应用于生产密封性容器和管道等。
(3)对焊:根据焊接工艺过程不同,对焊可分为电阻对焊和闪光对焊。
1、电阻对焊
焊接过程是先施加顶锻压力(10-15MPa),使工件接头紧密接触,通电加热至塑性状态,然后施加顶锻压力(30-50MPa),同时断电,使焊件接触处在压力下产生塑性变形而焊合。电阻对焊操作简便,接头外形光滑,但对焊件端面加工和清理要求较高,否则会造成接触面加热不均匀,产生氧化物夹杂、焊不透等缺陷,影响焊接质量。因此电阻对焊一般只用于焊接直径小于20mm、截面简单和受力不大的工件。
2、闪光对焊
焊接过程是先通电,再使两焊件轻微接触,由于焊件表面不平,使接触点通过的电流密度很大,金属迅速熔化、气化、爆破,飞溅出火花,造成闪光现象。继续移动焊件,产生新的接触点,闪光现象不断发生,待两焊件端面全部熔化时,迅速加压,随即断电并继续加压,使焊件焊合。闪光对焊的接头质量好,对接头表面的焊前清理要求不高。常用于焊接受力较大的重要工件。闪光对焊不仅能焊接同种金属,也能焊接铝钢、铝铜等异种金属,可以焊接0.01mm的金属丝,也可以焊接直径500mm的管子及截面为20000mm2的板材。
三、电阻焊的特点
1、电阻焊接的品质是由以下4个要素决定的:
1)电流;2)通电时间;3)加压力;4)电阻顶端直径。
2、电阻焊的优点:
1)熔核形成时,始终被塑性环包围,熔化金属与空气隔绝,冶金过程简单。
2)加热时间短,热量集中,故热影响区小,变形与应力也小,通常在焊后不必安排校正和热处理工序。
3)不需要焊丝、焊条等填充金属,以及氧、乙炔、氢等焊接材料,焊接成本低。
4)操作简单,易于实现机械化和自动化,改善了劳动条件
5)生产率高,且无噪声及有害气体,在大批量生产中,可以和其它制造工序一起编到组装线上。但闪光对焊因有火花喷溅,需要隔离。
3、电阻焊的缺点:
1)目前还缺乏可靠的无损检测方法,焊接质量只能靠工艺试样和工件的破坏性试验来检查,以及靠各种监控技术来保证。
2)点、缝焊的搭接接头不仅增加了构件的重量,且因在两版焊接熔核周围形成夹角,致使接头的抗拉强度和疲劳强度均较低。
3)备功率大,机械化、自动化程度较高,使设备成本较高,维修较困难,并且常用的大功率单相交流焊机不利用电网的平衡运行
四、我国电阻焊的应用现状
随着航空航天、电子、汽车、家用电器等工业的发展、电阻焊越加收到广发的重视,同时对电阻焊的质量也提出了更高的要求,可喜的是我国微电子技术的发展和大功率可控硅、整流器的开发,给电阻焊技术的提高提供了条件。目前我国已生产了性能优良的次级整流焊机,由集成电路和微型计算机构成的控制箱已用于新焊机的配套和老焊机的改造,恒流、动态电阻,热膨胀等先进的闭环监控技术已开始在生产中推广应用。这一切都将有利于提高电阻焊质量,并扩大其应用领域。
五、电阻焊基本原理
焊接热的产生及影响产热的因素点焊时产生的热量由下式决定:
Q=I2Rt
式中Q——产生的热量(J)
I2——焊接电流(A)的平方
R——电极间电阻(Ω)
t——焊接时间(s)
电阻R及影响R的因素式中的电极间电阻包括工件本身电阻R,两工件接触电阻R,电极与工作间接触电阻R。
当工件和电极已定时,工件的电阻取决于它的电阻率。因此,电阻率是被焊材料的重要性能。电阻率高的金属其导热性差(如不锈钢),电阻率低的金属其导热性好(如铝合金)。因此,点焊不锈钢时产热易而散热难,点焊铝合金时产热难而散热易。电焊时,前者可以用较小电流(几千安培),后者就必须用很大电流(几万安培)
六、主要参数对焊接的影响
1、焊接电流的影响
从公式可见,电流对产热的影响比电阻和时间两者都大。因此,在点焊过程中,它是一个必须严格控制的参数,引起电流变化的主要原因是电网电压波动和交流焊机次级回路阻抗变化。阻抗变化是因回路的几何形状变化或因在次级回路中引入了不同量的磁性金属,对于直流焊机,次级回路阻抗变化,对电流无明显影响。
除焊接电流总量外,电流密度也对加热有显著影响。通过已焊成焊点的分流,以及增大电极接触面积或凸焊时的凸点尺寸,都会降低电流密度和焊接热,从而使接头强度显著下降。
2、焊接时间的影响
为了保证熔核尺寸和焊点强度,焊接时间与焊接电流在一定范围内可以互为补充。为了获得一定强度的焊点,可以采用大电流和短时间(强条件,又称强规范),也可以采用小电流和长时间(弱条件,又称弱规范)。选用强条件还是弱条件,则取决于金属的性能、厚度和所用焊机的功率。
但对于不同性能和厚度的金属所需的电流和时间,都仍有一个上、下限,超过此限,将无法形成合格的熔核。
3、电极压力的影响
电极压力对两电极间总电阻R有显著影响,随着电极压力的增大,R显著减小。此时焊接电流虽略有增大,但不能影响因R减少而引起的产热的减少。因此,焊点强度总是随着电极压力的增大而降低。在增大电极压力的同时,增大焊接电流或延长焊接时间,以弥补电阻减小的影响,可以保持焊点强度不变.采用这种焊接条件有利于提高焊点强度的稳定性.电极压力过小,将引起飞溅,也会使焊点强度降低.
4、电极形状及材料性能的影响
由于电极的接触面积决定着电流密度,电极材料的电阻率和导热性关系着热量的产生和散失,因而电极的形状和材料对熔核的形成有显著影响。随着电极端头的变形和磨损,接触面积将增大,焊点强度将降低。
5、工件表面状况的影响
工件表面上的氧化物、污垢、油和其它杂质增大了接触电阻。过厚的氧化物层甚至会使电流下能通过。局部的导通,由于电流密度过大,则会产生飞溅和表面烧损。氧化物层的不均匀性还会影响各个焊点加热的不一致,引起焊接质量的波动。因此,彻底清理工件表面是保证获得优质接头的必要条件。
|